UFR de Physique

Propositions de stages en laboratoire -- M2

Les offres sont actualisées en mai. Par exemple, les offres de stages pour l'année universitaire 2015-2016 seront mises en place en mai 2015, les offres de stages pour l'année universitaire 2016-2017 seront mises en place pour en mai 2016, etc.

Experimental study of topological properties of photonic lattices

  • Option Lumière-Matière, Générique du parcours Lumière-Matière
  • Laboratoire: Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM)
  • Responsable du stage: AMO Alberto (alberto.amo@univ-lille1.fr, 03. 20 43 46 49)
  • Mots clés: nonlinear optics, quantum simulation, topology, laser
  • Fiche complète en PDF : Fiche complète en PDF

Lattices of photonic resonators in which photons can hop from site to site are one of the most promising platforms for quantum simulation. A particularly suitable system to do this is lattices of micropillars in semiconductor microcavities: the escape of photons out of the microcavity provides a direct optical access to the energy-momentum dispersion and to the real space propagation; additionally, they present extraordinary nonlinear properties giving rise to superfluidity of light.

In this project, we will study the propagation of photons in photonic lattices based on semiconductor microcavities. An example is the honeycomb lattice shown in the figure. This lattice is a hexagonal structure present in solid-state materials such as graphene –a carbon structure that is revolutionizing electron transport devices. However, many fascinating properties predicted for graphene are hard to study experimentally in electron transport experiments. In this project we will use our photonic simulator of graphene to study experimentally the ballistic transport of photons in such a lattice, new types of photon tunnelling and photon superfluidity. We will pay particular attention to the topological properties of the lattice, which allow propagation immune to disorder.

The master thesis will be experimental and it will involve working in an optics microscopy laboratory. Our studies will be performed in closed collaboration with theoretical groups in the framework of several international projects.

More information: http://honeypol.eu/. 1 Lasing in topological edge states of a one-dimensional lattice, P. St-Jean et al., Nat. Photon. 11, 651 (2017). 2 Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons, T. Jacqmin, et al., Phys. Rev. Lett. 112, 116402 (2014). 3 Polariton superfluids reveal quantum hydrodymic solitons, A. Amo et al., Science 332, 1167 (2011).