UFR de Physique

Propositions de stages en laboratoire -- M2

Les offres sont actualisées en mai. Par exemple, les offres de stages pour l'année universitaire 2015-2016 seront mises en place en mai 2015, les offres de stages pour l'année universitaire 2016-2017 seront mises en place pour en mai 2016, etc.

Etudes des états chimères des systèmes dissipatifs discrets - Chimera states in discrete disipatives systems

  • Option Lumière-Matière, Générique du parcours Lumière-Matière
  • Laboratoire: Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM)
  • Responsable du stage: COULIBALY Saliya (saliya.coulibaly@univ-lille.fr, 03.20.33.64.46)
  • Co-responsable(s): TAKI Majid
  • Mots clés: Spatiotemporal chaos - Chimera states - Nonlinear Optics
  • Fiche complète en PDF : Fiche complète en PDF

Chimera states are spatiotemporal patterns in which an array of oscillators splits into two domains: one coherent and phase locked, the other incoherent and desynchronized 1,2. A while after their discovery, the main ingredient to explain this counterintuitive state was the weakness or non-local nature of the coupling between the oscillators. However, recent works have reported on chimera states in globally 3 and, strong and non-locally coupled oscillators 4. These works opened the possibility to generate a novel type of chimera state based on other type of oscillators coupling. In this project, we will study the case of the nearest neighbor local coupling widely present in nature. To this end we consider an array of coupled-waveguides resonators. Coupled-waveguides play an important role in communication technologies, optical computing, and even quantum information processing. From a fundamental point of view, their dynamic behaviors exhibit interesting states like discrete solutions 5. Based on a discrete model, we will investigate the formation of complex spatiotemporal localized states in an array of coupled-waveguide resonators. These localized states can be seen as the optical analogues of chimera states. By means of the Lyapunov spectrum tools, the characterization of the spatiotemporal chaotic nature of these optical chimera states will be also considered 6.

1 D. M. Abrams, and S. H. Strogatz, Phys. Rev. Lett. 93, 174102, (2004). 2 Y. Kuramoto, and D. Battogtokh, Nonlinear Phenom. Complex Systems 5, 380 (2002). 3 G.C. Sethia, and A. Sen, A. Phys. Rev. Lett. 112, 144101 (2014). 4 G. C. Sethia, A. Sen, and G. L. Johnston, Phys. Rev. E 88, 042917(2013). 5 U. Peschel, O. Egorov, and F. Lederer, Opt. Lett. 29, 1909 (2004). 6 M. G. Clerc, M. A. Ferré, S. Coulibaly, R. G. Rojas, and M. Tlidi, Opt. Lett. 42, 2906 (2017).